
Future directions

in large-scale storage systems

Justin M Wozniak

Argonne National Laboratory

Presented at:

Northwestern University

Evanston, IL – May 3, 2010

Outline

 Overview

– High-performance computing and systems software

– Exascale on the horizon

 Next-generation filesystems

– Object storage systems

– Distributed data structures (C-MPI)

 Reliability at extreme scale

– Data placement for survivability

– Simulation and analysis of rebuild performance (GOBS)

 Many-file applications

– Swift and many-task computing

– Improvements for data access to many small files (CDM)

Future directions in large-scale storage systems

2
05/03/2010

High-performance computing

 Leadership systems

– ANL – IBM BG/P Intrepid @ 557 TFlops

– ORNL – Cray XT5 Jaguar @ 1.75 PFlops

– TACC – Sun Constellation Ranger @ 505 TFlops

 Clusters

– U of Chicago – Intel Xeon PADS – 48 nodes x 4 cores

– ANL – AMD Breadboard – 64 nodes x 8 cores

 Grids

– Open Science Grid – ~25,000 nodes

– TeraGrid – Access to a variety of high-performance resources

05/03/2010

Future directions in large-scale storage systems

3

Uses of high-performance storage (1)

 Checkpoint

– Write out all user memory to non-volatile storage

– Basic survival strategy to avoid lost work

 Optimal checkpoint interval

– First-order approximation to optimal checkpoint write interval

» to : checkpoint interval

» tw : time to write checkpoint

» tf : mean time to failure

 Future trends

– Bigger memory → longer writes

– More components → more faults

– Could reach a critical point

05/03/2010

Future directions in large-scale storage systems

4

fwo ttt 2

Uses of high-performance storage (2)

 Useful application data

– MPI-IO

• Parallel interface for file I/O operations

• Allows I/O experts to implement optimizations

– High-level libraries

• Provide a variable-oriented view on data

• PnetCDF, HDF5, ADIOS

• Can use MPI-IO

– POSIX I/O

• Still prevalent in large-scale applications

• Must maintain user expectations, portability, but make use of high-performance
machines

05/03/2010

Future directions in large-scale storage systems

5

PVFS – Clemson, ANL
Open source, community
maintained

GPFS – IBM
Licensed by IBM

Lustre – Oracle/Sun
Open source but supported

PanFS – Panasas
Software/hardware packages

Parallel filesystems

 Eliminate single bottlenecks in I/O

05/03/2010

Future directions in large-scale storage systems

6

DISK DISK DISK DISK

FS FS FS FS

-- NETWORK --

CLIENT CLIENT CLIENT CLIENT

-- APPLICATION --

Object storage

 Separation of concerns

 Employed by many modern systems – not “old news” either

05/03/2010

Future directions in large-scale storage systems

7

-- NETWORK --

DISK

FS

CLIENT

-- NETWORK --

BLOCKS

-- NETWORK --

DISK

FS

CLIENT

-- NETWORK --

BLOCKS

OBJECTS→

Distributed data structures

05/03/2010

Future directions in large-scale storage systems

8

Data placement in parallel filesystems

 Centralized metadata

 Distributed metadata

Future directions in large-scale storage systems

/

usr home

~wozniak

file

b[1]b[0]

DISK DISK DISK DB

OBJECTS FSOBJECTSOBJECTS

b[2]

/

file

b[1] b[2]b[0]

DISK DISK DISK DB

OBJECTS FSOBJECTSOBJECTS

/file

b[1] b[2]b[0]

~wozniak

Distributed metadata

 Design features

– Decentralized (fast)

– Reliable

– Distributed

– Consistent

 Distributed hash tables (DHTs)

– Originally designed for wide-area networks

– Self-constructing

– Self-organizing

– Self-healing

– Scalable

– …

05/03/2010

Future directions in large-scale storage systems

10

Chord
Pastry
Kademlia
CAN
…

Server-server communication

 Metadata

– Distributed objects (distributed directories)

– Searches

 Collective operations

– Allocation of striped files

– Control communication

 Network choices

– BMI

• Network abstraction layer

• Developed for PVFS, now a stand-alone system

– MPI

• Rich API for parallel programming

• Typically used by high-performance applications

05/03/2010

Future directions in large-scale storage systems

11

Content-MPI (C-MPI)

 New DHT implementation based on MPI

– MPI library allows integration with existing software, methods

– Abstraction over DHT details, placement algorithm

 Uses “monolithic” MPI or “dynamic processes” without application
modification

– Monolithic

• “Normal” MPI usage

• Uses one big MPI communicator

– Dynamic processes

• MPI-2 feature set

• Dynamic processes allow for dynamic allocation and connection of independent
processes

• Basic model for fault-tolerant MPI programs

05/03/2010

Future directions in large-scale storage systems

12

C-MPI use cases

 MPI library

– Programming model analogous to Linda, blackboards

– Perform remote function on remote object

– Maintain critical application state in distributed, fault tolerant manner

 Distributed database

– Perform lookups for key/value pairs

– C heck on state of application progress

 Shell IPC

– Shell tools provided to communicate with background process linked to C-MPI

– Useful for many-task computing (more to come…)

05/03/2010

Future directions in large-scale storage systems

13

C-MPI internals

 Layered architecture

 MPI-RPC programming model

– Use non-blocking MPI calls

– Make progress on RPC return using user function pointer

– Help with management of many outstanding RPCs

05/03/2010

Future directions in large-scale storage systems

14

MPI application

Key/value interface

Asynchronous RPC

MPI

DHT algorithm

Kademlia

 Assign each node a 160-bit identifier

 Use XOR metric:

distance(X,Y) = xor(X,Y) as integer

 Each node stores a neighbor table with
O(log n) rows, k columns:

– For node X,
Row i contains k nodes Y :

distance(X,Y) = xor(X,Y) [2i, 2i+1)

 New neighbors discovered
dynamically

Future directions in large-scale storage systems

15

Performance results: SiCortex

05/03/2010

Future directions in large-scale storage systems

16

• Lookup RPCs per user lookup • Small key/value pair insertions;
memory only

Fault-tolerance

 Fault emulation in MPI-RPC

– User sets node to emulate failure

– Subsequent RPCs “fail”

 Performs as expected

– Data still available

– Overlay network not partitioned

05/03/2010

Future directions in large-scale storage systems

17

• Probability that a key/value
pair is still available given a
system size and fault count
• Replica count = 3

Fault-tolerance in MPI

 MPI Standard

– Overall assumption: MPI users should not worry about faults

– Standard does allow communication errors to be reported to user

– Theoretically could recover from errors on one communicator, continue to use
and create other communicators: this is our approach

– Difficult issues remain in the case of collective operations, blocking operations
(cannot wait forever)

– May be addressed by new non-blocking collective operations and dynamic
process functionality

 MPI implementations

– Typically, cannot recover from errors

– Work is being done…

05/03/2010

Future directions in large-scale storage systems

18

C-MPI: Summary

 Distributed storage requires highly scalable metadata management

 Distributed hash tables

 Implementation

05/03/2010

Future directions in large-scale storage systems

19

Object storage rebuild simulation

05/03/2010

Future directions in large-scale storage systems

20

Exascale storage challenges

 Number of disks

– Speed: to satisfy checkpoint requirements, will need ~30,000 disks

– Capacity: may use additional storage hierarchy for space

 Required bandwidth

– ~12 TB/s

– New ability to manage many clients

 Redundancy

– Must plan to lose up to 10% of disks per year

– That’s 263 TB/day; 3.125 GB/s

 (Power)

05/03/2010

Future directions in large-scale storage systems

21

Disk failure rates

 CMU study

– Typically ~5%/year

– Up to 13%

 Google study

– Below 5% in first year

– Peaks near 10% in year 3

05/03/2010

Future directions in large-scale storage systems

22

 GOBS simulation of 32,000 disks in RAID 5 (4+1)
Plot shows inter-node traffic due to RAID loss

Simple data placement is problematic

 Combine local RAID with inter-node replication for availability

 Local RAID is relatively faster for read-modify-write operations

 Whole node loss – often temporary – managed with replicas

05/03/2010

Future directions in large-scale storage systems

23

 Replica chaining

 Simple, localized object
placement

 On rebuild, creates a hot spot
of activity

 Large declustered RAIDs

 Fully distributed

 On rebuild, all nodes involved,
all write to one new disk

DISK DISK NEW DISK DISKDISK NEW DISK

Simulation as initial approach

 Simulated system

05/03/2010

Future directions in large-scale storage systems

24

 Workload simulation

 Idealized control

 Object servers

 General OBject Space (GOBS) simulator architecture

05/03/2010

Future directions in large-scale storage systems

25

 User interface

 Core functionality

 Replaceable components

Simulator - extensibility

 Extensible Java simulator

– Heavy use of inheritance

– Enable easy implementation of new schemes

 Class hierarchy:

05/03/2010

Future directions in large-scale storage systems

26

GOBS results – rebuild hot spots

 600 servers; 30 TB disks; RAID 5 (4+1); disk transfer rate 400 MB/s;

 1EB filesystem

 Single fault induced – rebuild performed

 Replica pulled from last in chain

05/03/2010

Future directions in large-scale storage systems

27

 Replica pulled from random node

GOBS results – rebuild curves

 Single fault induced – rebuild performed

 Replica pulled from last in chain

05/03/2010

Future directions in large-scale storage systems

28

 Replica pulled from random node

GOBS results – rebuild concurrency

05/03/2010

Future directions in large-scale storage systems

29

 Multiple faults induced – average
traffic recorded

 Replica pulled from primary

 “target” – RAID (4+1)

 “san” – RAID (8+2)

 “active” – begin copies
immediately

 “latent” – wait until replacement is
inserted

GOBS results – data loss

 Vary disk MTTF and report objects
lost per year

 Neither scheme loses data unless
MTTFs are extremely low

 Indicates that aggressive schemes
may be used that favor user accesses

 (How does one quantify amount of
data loss?)

05/03/2010

Future directions in large-scale storage systems

30

GOBS: Summary

 Data placement strategies matter when performing rebuilds

 Rebuild time matters over long data lifetimes

 Simulation can help evaluate placement strategies

 Much more to do here…

05/03/2010

Future directions in large-scale storage systems

31

Collective data management

05/03/2010

Future directions in large-scale storage systems

32

Many-task computing

 Combine grid computing infrastructure with high-performance resources

 Reuse robust grid software systems

 Use new, rapid schedulers (Falkon, Coasters)

 Plenty of applications

 Fault-tolerant, scalable

Future directions in large-scale storage systems

33
05/03/2010

Scripted applications

 Development timeline:

– Scientific software developer produces sequential code for application research

– Produces small batch runs for parameter sweeps, plots

– Small scale batches organized through the shell and filesystem

– Additional scaling possible through the application of grid tools and resources

– What if the application is capable of (and worthy of) scaling further?

Future directions in large-scale storage systems

34
05/03/2010

Swift and related tools

 Separate workflow description from implementation

 Compile and generate workloads for existing execution infrastructures

Future directions in large-scale storage systems

35
05/03/2010

<sites.xml>
…

rawdata = sim(settings);
stats = analysis(rawdata);

…

compile

select resources

allocate resources

write script

 execute

Default I/O

 In a standard Swift workflow, each task must enumerate its input and
output files

 These files are shipped to and from the compute site

Future directions in large-scale storage systems

36
05/03/2010

submit site

copy inputs

return outputs

compute

 This RPC-like technique is problematic for large numbers of short jobs

Data generation and access

 Current I/O systems work recognizes the challenges posed by large batches
of small tasks

 Characterized by:

– Small files

• Small, uncoordinated accesses

• Potentially large directories

– Whole file operations

– Metadata operations

• File creates

• Links

• Deletes

 Overall challenges

– BlueGene/P:

• I/O bandwidth: down to 400 KB/s /core

• File creation rate: only 1/hour /core (Raicu et al.)

05/03/2010

Future directions in large-scale storage systems

37

Related work

 Filesystem optimizations

– PVFS optimizations for small files (Carns et al. 2009)

• Improved small object management

• Eager messages

– BlueFS client optimizations (Nightingale et al. 2006)

• Speculative execution in the filesystem client

• Mitigates latency

 Scheduling and caching

– BAD-FS (Bent et al. 2004)

– Data diffusion (Raicu et al. 2009)

 Collective models

– Enable programmer support

– Borrow from strengths of MPI, MPI-IO functionality

– Expose patterns explicitly (MapReduce, etc.)

05/03/2010

Future directions in large-scale storage systems

38

Collective Data Management

 Provide primitives that the programmer can use explicitly

– May already be used via custom scripts

– Generally difficult to specify with sequential languages

 Broadcast (aggregation, map):

»

 Scatter (two-phase):

»

 Gather (aggregation, reduce)

»
05/03/2010

Future directions in large-scale storage systems

39

Cache techniques

 Cache pinning (specify critical data)

»

 Workflow/data-aware scheduling

»

05/03/2010

Future directions in large-scale storage systems

40

time

I/O reduction

 Let applications continue to move large quantities of small data over POSIX
interfaces

 Prevent these accesses from reaching the filesystem

05/03/2010

Future directions in large-scale storage systems

41

U
se

r
I/

O CDM

I/O reduction

 The purpose of each potential CDM technique is to reduce accesses to the
filesystem

 In our case studies, we sought to estimate the maximum possible reduction
that a carefully-written application could achieve on our target system
model

 In a default scripted workflow, all accesses go to the FS

 As a start, we used an I/O reduction defined as:

 in bytes

 Other interesting quantities could measure file creates, links, or a count of
accesses regardless of size

05/03/2010

Future directions in large-scale storage systems

42

appsby seen I/O

FSby seen I/O
%100reduction

Case studies: High-level view

 OOPS: Open Protein Simulator

 DOCK: Molecular docking

 BLAST: Basic Local Alignment Search Tool

 PTMap: Post-transformational modification analysis

 fMRI: Brain imaging analysis

05/03/2010

Future directions in large-scale storage systems

43

fMRI

05/03/2010

Future directions in large-scale storage systems

44

 Simple MapReduce-like structure

 Broken down into scatter and gather operations

 Intermediate data can be cached. Produces much final output

BLAST

05/03/2010

Future directions in large-scale storage systems

45

 Like MapReduce with two inputs

 If cache is used to implement broadcast, must prevent pollution

 Produces trivial final output – I/O reduction may exceed 99%

DOCK

05/03/2010

Future directions in large-scale storage systems

46

 Significant input size

 Pipeline-like accesses

 Produces trivial final output – I/O reduction may exceed 99%

OOPS

05/03/2010

Future directions in large-scale storage systems

47

 Significant input size

 Pipeline-like accesses and iterations

 Produces trivial final output – I/O reduction may exceed 99%

PTMap

05/03/2010

Future directions in large-scale storage systems

48

 Pipeline-like accesses and iterations

 Uses links to create an intermediate index

 Produces trivial final output – I/O reduction may exceed 99%

Observations

 Great deal of potential optimizations

– Many of which are previously studied

– Difficult to implement with sequential programming models

 Small files

– Large input data sets must be read efficiently

– Many small files are created, written once, and possibly read again multiple
times, primarily by transmission to other compute jobs

– Developer basically knows this – must be able to express it

 Patterns

– MPI-like concepts such as broadcasts, gathers, and even point-to-point messages
help describe the I/O patterns

– Can be exposed to the developer through scripting abstractions

05/03/2010

Future directions in large-scale storage systems

49

CDM active client

 New CDM module allows for dynamic data access on the compute site

 Implemented by modifying Swift wrapper scripts

05/03/2010

Future directions in large-scale storage systems

50

submit site

copy policy (& inputs?)

(return outputs?)

compute

data access

CDM

Agg. C-MPI?Alt. FS HW Etc.?

Summary

 Investigated I/O performance characteristics of five scalable applications

– Laid out workflow job/data dependencies

– Compared with well-studied patterns

– Performed coarse studies of file access statistics

– Looked at idealized potential optimizations (gedankenexperiments)

 Portability

– Running on the BG/P not unlike running on the grid

– Benefit from existing software systems

– Work within the typical scientific development cycle

 Lots to do

– Proposed new software toolkit and language integration

– Largely based on existing tools; package and expose to developers

05/03/2010

Future directions in large-scale storage systems

51

Thanks

 Rob Ross and the Radix group

 Mike Wilde and the Swift community

 Application collaborators: Yue Chen (PTMap),
Aashish Adhikari (OOPS) and Sarah Kenny (fMRI)

 Thanks to Ioan Raicu and CUCIS

 Grants:
This research is supported in part by NSF grant OCI-721939, NIH grants DC08638 and DA024304-02, the Office of
Advanced Scientific Computing Research, Office of Science, U.S. Dept. of Energy under Contracts DE-AC02-
06CH11357 and DE-AC02-06CH11357. Work is also supported by DOE with agreement number DE-FC02-
06ER25777.

05/03/2010

Future directions in large-scale storage systems

52

Questions

05/03/2010

Future directions in large-scale storage systems

53

